[Bevezetés]
[Irodalmi áttekintés]
[Anyag és módszer]
[Eredmények és értékelésük]
[Következtetések, javaslatok]
[Összefoglalás]
[Irodalomjegyzék]
[Melléklet]
[Tézisek]
[Theses]
11. Irodalomjegyzék 1.
Ahuja, A.S.a – Hendee, W.R. (1978):
Effectes of particle shape and orientation on propagation of sound in
suspensions. Journal of the Acoustical Society of America, Vol. 63, Issue 4,
pp. 1074-1080. 2.
Ahmed, F. I. K. – Russel, C. (1975): Synergism between
ultrasonic waves and hydrogen peroxide in the killing of microorganisms. J.
Appl. Bacteriol. Vol. 39., pp. 31. - 40. 3.
Airy, G.B. (1845): Enciclopedia Metropolitana. London,
Vol. 5. In.: Rooney, J.A. (1988): Other Nonlinear Acoustic Phenomena. In.:
Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and Biological
Effets. VCH Verlagsgesellschaft mbH, Weinheim, pp. 65-92. 4.
Allegra, J.R. – Hawley, S.A. (1972): Attenuation of
sound in suspensions and emulsions: theory and experiments. Journal of the
Acoustical Society of America, Vol. 51, Issue 5, Part 2, pp. 1545-1564. 5.
Alliger, H. (1975): Ultrasonic disruption. Am. Lab.
Vol. 10., pp. 75-85. 6.
Apfel, R. (1970): Acoust. Soc. Am. Vol. 48. p. 1179.
In.: Atchley, A.A. – Crum, L.A. (1988): Acoustic Cavitation and Bubble
Dynamics. In.: Suslick, S. K. (1988):
Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim. 7.
Apfel, R. (1981): in Ultrasonics. Ed. Edmonds, P.,
Academic Press, New York, 1981, Vol. 19, Ch. 7, pp. 355-441. 8.
Apfel, R. E. (1986): Acoustic cavitation. Meth Exp
Phys., Vol. 19, pp. 355-441. 9.
Atchley, A.A. (1984): Ph.D. Dissertation, The
University of Mississippi, Oxford. In.: Atchley, A. A. – Crump, L. A. (1988):
Acoustic Cavitation and Bubble Dynamics. In.:
Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and
Biological Effets. VCH Verlagsgesellschaft mbH, Weinheim. 10.
Atchley, A. A. – Crump, L. A. (1988): Acoustic
Cavitation and Bubble Dynamics. In.:
Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and
Biological Effets. VCH Verlagsgesellschaft mbH, Weinheim, pp. 1-63. 11.
Babick, F. – Hinze, F. – Ripperger, S. (2000):
Dependence of ultrasonic attenuation on the material properties. Colloids and
Surfaces A: Physicochemical and Enginnering Aspects, Vol172, Issues 1-3, pp.
33-46. 12.
Barnett, S. B. – Miller, M. W. – Cox, C. – Carstensen,
E. L. (1988): Increased sister chromatid exchanges in Chinese hamster ovary
cells exposed to high intensity pulsed ultrasound. Ultrasound Med. Biol. Vol.
14, pp. 397-403. 13.
Benes, E. - Grösschl, M. - Handl, B. – Trampler, F.
Nowotny, H. (1998): Das europaische TMR-Netzwerk „Ultrasonic Separation of
Suspended Particles” Proc. Joint Symposium AAA and ÖPG TC Acoustics, Graz,
Austria, 14. - 15. 1998, p 2, Austrian Acoustic Association and TC Acoustic of
the Austrian Physical Society. 14.
Bezzubov, A. D. – Garlinszkaja, E. I. – Fridman, V. M.
(1967): Ultrahang felhasználása az élelmiszeriparban. Budapest p. 27., 29.,
94., 106. 15.
Bíró, I. (1976): Mikrobiológiai Gyakorlatok. ATE
Mezőgazdaságtudományi Kar, Tejgazdaságtani és Mikrobiológiai Tanszék. p.: 64. 16.
Bjerknes, V. F. K. (1906): Fields of Force. Columbia
Uniwersity Press, New York. 17.
Blackshear, P. L. – Blackshear, G. L. (1987):
Mechanical hemolysis. In: Skalak, R. – Chien, S. eds. Handbook of
bioengineering. New Zork: McGraw-Hill, pp. 15.1-15.9. 18.
Blake, F.G. (1948): The Onset of Cavitation in
Liquids, Tech. Memo No. 12, Harvard Acoustic Laboratory, Cambridge. 19.
Bleaney, B. I. – Blackburn, P. - Kirkley, J. (1972):
Br. J. Radiol. 45, 354. 20.
Bondy, C. – Söllner, K. (1935): Trans. Farad. Soc. 31,
pp. 835-842. 21.
Brayman, A. A. – Miller, M. W. (1992): Bubble cycling
and standing waves in ultrasonic cell lysis. Ultrasound Med. Biol. Vol. 18.,
pp. 411-420. 22.
Brayman, A. A. – Miller, M. W. (1993): Cell density
dependence of the ultrasonic degassing of fixed erythrocyte suspensions.
Ultrasound Med. Biol. Vol. 19., pp. 243-252. 23.
Brayman, A. A. – Azadniv, M. – Miller, M. W. – Chen,
X. (1994): Bubble recycling and ultrasonic cell lysis in a stationary exposure
vessel. J. Acoust. Soc. Am. Vol. 96. pp. 627-633. 24.
Carstensen, E.L. – Schwann, H.P. (1959): Acoustic
Properties of Hemoglobin Solutions. J. Acoust. Soc. Amer. Vol. 31, p. 305. 25.
Carstensen, E.I. – Becroft, S.A. – Law, W.K. – Barbee,
D.B. (1981): J. Acoust. Soc. Am. Vol. 70, p. 302. 26.
Carstensen, E. L. – Kelly, P. – Chrunch, C. C. –
Brayman, A. A. – Child, S. Z. – Raeman, C. H. – Schery, L. (1993): Lysis of
erythrocytes by exposure to CW ultrasound. Ultrasound Med Biol., Vol. 19, pp.
147-165. 27.
Chapman, I. V. (1974): Br. J. Radiol. 47, 411. 28.
Church, C. C. – Flynn, H. G. – Miller, M. W. – Sacks,
P. G. (1982): Ultrasound Med Biol. 8, 299. 29.
Church, C. C. – Miller, M. W. (1983): The kinetics and
mechanics of ultrasonically-induced cell lysis produced by non-trapped bubbles
in a rotating culture tube. Ultrasound Med Biol., Vol. 9, pp. 385-393. 30.
Ciccolini, L. – Taillandier, P. – Wilhem, A. M. –
Delmas, H. – Strehaiano, P. (1997): Low frequenc thermo-ultrasonication of
Saccharomyces cerevisiae suspensions: effect temperature and of ultrasonic
power. Chemical Engineering Journal. Vol. 65., Issue. 2., pp. 145-149. 31.
Coakley, W. T. (1997): Ultrasonic separations in
analitical biotechnology. Trends in Biotechnology, Vol. 15, Issue 12, pp.
506-511. 32.
Coakley, W. T. – Hawkes, J. J. – Sobanski, M. A. –
Cousins, C. M. – Spengler, J. (2000): Analytical scale ultrasonic standing wave
manipulation of cells and microparticles. Ultrasonics, Vol. 38, Issues 1-8, pp.
638-641. 33.
Connolly, W. – Fox, F. (1954): Acoust. Soc. Am. Vol.
26. p. 843. In.: Atchley, A.A. – Crum, L.A. (1988): Acoustic Cavitation and
Bubble Dynamics. In.: Suslick, S. K.
(1988): Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim. 34.
Connolly, C. C. (1969): Ph.D. Thesis, University of
London. 35.
Crum, L. (1979): Nature (London), Vol. 278. p. 148.
In.: Atchley, A.A. – Crum, L.A. (1988): Acoustic Cavitation and Bubble
Dynamics. In.: Suslick, S. K. (1988):
Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH Verlagsgesellschaft
mbH, Weinheim. 36.
Crum, L. A. (1980): J. Acoust. Soc. Am. 68, 203. 37.
Davis, J. G. (1949): Ultrasonics and alternatives to
the pasteurization of milk. Dairyman 66., p. 321. 38.
Deák, T. (1997): Élelmiszeripari Mikrobiológia.
Kertészeti és Élelmiszeripari Egyetem, Tartósítóipari Kar. pp.: 51-57. 39.
Deng, C. X. – Quihong, X. – Apfel, R. E. – Holland, C.
K. (1996): In vitro measurements of inertial cavitation thresholds in human
blood. Ultrasound in Medicine and Biology, Vol. 22, Issue 7, pp. 939-948. 40.
Dinno, M. A. – Crum, L. A. – Wu, J. (1989): The effect
of therapeutic ultrasound on electrophysiological parameters of frog skin.
Ultrasound Med. Biol. Vol. 15., pp. 461-470. 41.
Dinno, M. A. – Al-Karmi, A. M. – Stoltz, D. A. –
Matthews, J. C. – Crum, L. A. (1993): Effect of free radical scavengers on
changes in ion conductance during exposure to therapeutic ultrasound. Membr.
Biochem. Vol. 10., pp. 237-247. 42.
Doida, Y. – Brayman, A. A. – Miller, M. W. (1992):
Ultrasound-induced in vitro cell lysis: node-antinode interactions. J.
Ultrasound Med. Vol. 11., pp. 413 - 417. 43.
Dolganowa, N. – Karitskaya, S. –
Crekhtunova, V. – Lubovschina, T. (1994): Ultrasonic stimulation of chlorella
population growth. Acta Ichthyol. Piscat. Vol. 24(2). pp. 165-170. 44.
Dooley, D. A. – Sacks, P. G. – Miller, M. W. (1984):
Production of thimine base damage in ultrasound exposed EMT6 mouse mammary
sarcoma cells. Radiat. Res. Vol. 97., pp. 71-86. 45.
Dunn, F. – Edmonds, P.D. – Fry, W.J. (1969):
Absorption and Dispersion of Ultrasound in Biological Media. In Schwann, H.P.
(1969): Biological Engineering. McGraw.Hill Book Co., New York, Chapt. 3, pp.
203-332. 46.
Dvorak, V. (1876): Poggendorf’s Ann. 157, 42. 47.
Dyson, M. (1985): in „Biological Effects of
Ultrasound”, Clinics in diagnostic ultrasound, Nyborg, W. I. – Ziskin, M. C.,
Eds., Churchill Livingstone, New York, 1985, Vol. 16, PP. 121-133. 48.
Earnshaw, R. G. – Appleyard, J. – Hurst, R. M. (1995):
Understanding physical inactivation processes: combined preservation
opportunities using heat, ultrasound and pressure. Int. J. Food Microbiol.,
Vol. 28., pp. 197-217. 49.
Eckart, C. (1948): Phys. Rev. 73, p.68. 50.
Ellwart, J. W. – Brettel, H. – Kober, L. O. (1988):
Cell membrane damage by ultrasound at different cell concentrations. Ultrasound
Med. Biol. Vol. 14., pp. 43-50. 51.
Esche, R. (1952): 2 AB. Acustica, p.208. In.: Fry, F.
J. (1978): Ultrasound: Its Applications in Medicine and Biology. Elsevier
Scientific Publishing Company, Amsterdam-Oxford-New York. 52.
Fábry, Gy. (1995): Élelmiszer-ipari eljárások és
berendezések. Mezőgazda Kiadó, Budapest. pp.: 268-430. 53.
Fay, R. (1931): J. Acoust. Soc. Am. Vol. 3. p. 222.
In.: Rooney, J.A. (1988): Other Nonlinear Acoustic Phenomena. In.: Suslick, S.
K. (1988): Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim, pp. 65-92. 54.
Feindt, W. (1951): Über die
Ultraschallemphindlichkeit desParamaecium caudatum. Strahlentherapie 84., pp.: 611-614. 55.
Flynn, H. G. (1964): in Physical Acoustics, Vol. 1B,
ed., Mason, W. P. Academic Press, New York, pp 57-172. 56.
Flynn, H. G. (1982): J. Acoust. Soc. Am. 72, 1926. 57.
Foldy, L.L. (1945): Multiple Scattering of Waves:
General Theory of Isotrpic Scattering by Randomly Distributed Scatterers. Phys.
Rev. Vol. 67, p.197. 58.
Fox, F. – Herzfeld, K. J. (1954): Acoust. Soc. Am. Vol.
26. p. 984. In.: Atchley, A.A. – Crum, L.A. (1988): Acoustic Cavitation and
Bubble Dynamics. In.: Suslick, S. K.
(1988): Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim. 59.
Förster, F . -
Holste A. (1937): Zur biologischen Wirkung von Ultraschall. Naturw. 25.,
pp.: 11-12. 60.
Frizzel, L.A. (1988): Biological Effects of Acoustical
Cavitation. In.: Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and
Biological Effets. VCH Verlagsgesellschaft mbH, Weinheim, pp. 287-301. 61.
Fry, F. J. (1978): Ultrasound: Its Applications in
Medicine and Biology. Elsevier Scientific Publishing Company,
Amsterdam-Oxford-New York. 62.
Fu, Y-K. – Miller, M. W. – Lange, C. S. – Griffiths,
T. D. – Kaufman, G. E. (1980): Ultrasound letality to synchronous and
asynchronous Chinese hamster V-79 cells. Ultrasound Med. Biol. Vol. 6., pp.
39-46. 63.
Ginzburg,
A. Sz. (1980): Teplofizicseszkije harakterisztiki pisevüh produktov. Pisevaja Pormüslennoszty, Moszkva. 64.
Gor’kov, L. P. (1962): Soc. Phys. Dokl. 6, 773. 65.
Gould, R. K.a – Coakley, W. T. – Grundy, M.
A. (1992): Uppersound pressure limits on particle concentration in fields of
ultrasonic standing-wave at megahertz frequencies. Ultrasonics, Vol. 30, Issue
4, pp. 239-244. 66.
Gröschl, M. (1998): Ultrasonic separation of suspended
particles. II. Design and operation of separation devices. Acustica – Acta
Acustica, Vol 84, Issue 4, pp. 632-642. 67.
Gröschl, M. – Trampler, F. – Benes, E. – Nowotny, H.
(1999): Analysis os composite resonators for ultrasonic micromanipulation and
separation. Acustica – acta acustica 85, Supplement 1, p. S92, as well as in
Journal of Acoustical Society of America Vol. 105, p. 1018, February 1999. 68.
Gupta, S.a – Feke, D.L.a –
Manas-Zloczover, I.b (1995): Fractionation of mixed particulate
solids according to compressibility using ultrasonic standing wave fields.
Chemical engineering Science, Vol. 50, Issue 20, pp. 3275-3284. 69.
Gülham, A. - Beylich, A. E. (1987): Untersuchungen zur
Dynamik von Geblasen. Acustica, 63, 276. 70.
Handl, B. – Gröschl, M. – Trampler, F. – Benes, E. –
Woodside, S. M. – Piret, J. M. (1998): Particle trajectories in a drifting
resonance field separation device. Proc. 16th Int. Congress on Acoustics and
135th Meeting Acoustical Society of America, Seattle/USA (20. – 26.61998) Vol.
III, ISBN 1-56396-817-7, (1998) pp. 1957-1958. 71.
Harwey, W. – Dyson, M. – Pond, J. B. (1975): in „Proc.
2nd European Congress on Ultrasonics in Medicine”, Kazner, E. – de Vlieger, M.
– Muller, H. R. – McCready, V. R. Eds., Excerpta Medica, Amsterdam, 1975,
Excerpta Medica International Congress Series No. 363., p. 10. 72.
Hawkes, J. J. – Limaye, M. S. – Coakley, W. T. (1997):
Filtration of bacteria and yeast by ultrasound enhanced sedimentation. Journal
of Applied Microbiology, Vol. 82, Issue 1. pp. 39-47. 73.
Hawkes, J. J. – Barrow, D. A. – Coakley, W. T. (1998
a): Microparticle manipulation in millimetre scale ultrasonic standing
wave chambers. Ultrasonics, Vol. 36, Issue 9, pp. 925-931. 74.
Hawkes, J. J. – Cefai, J. J. – Barrow, D. A. –
Coakley, W. T. – Briarty, L. G. (1998b): Ultrasonic manipulation of
particles in microgravity. J. Rhys. D: Appl. Phys. Vol. 31, pp. 1673-1680. 75.
Hawley, S. A. – Kessler, L. W. – Dunn, F. (1965):
Ultrasonic Absorption in Aqueous Solutions of High.Molecular-Weight Polisaccharydes.
J. Soc. Amer. Vol. 38. p. 521. 76.
Hibberd, D.J.a – Robinson, B.H.b
– Robins, M.M.a (1999): Ultrasonic characterisation of colloidal
dispersions: detection of flocculation and adsorbed layers. Colloids and
Surfaces B: Biointerfaces, Vol. 12 Issues 3-6, pp. 359-371. 77.
Hill, C.R. – Chivers, R.C. – Huggins, R.W. – Nicolas,
D. (1978): Scattering of Ultrasound by Human Tissue. In.: Fry, F. J. (1978):
Ultrasound: Its Applications in Medicine and Biology. Elsevier Scientific
Publishing Company, Amsterdam-Oxford-New York, pp. 441-493. 78.
Horbenko, I. G. (1977): Ultrahang a gépiparban.
Műszaki Könyvkiadó, Budapest. p. 186. 79.
Hrazdira, I. – Skorpikova, J. – Dolnikova, M.
–Janicsh, R. – Mornstein, V. (1998): The combined effect of ultrasound and
cytostatic treatment on the cytoskeleton of HeLa cells. Folia Biol, 44
(Suppl.): S 14. 80.
Hua, I. – Thompson, J. E. (2000): Inactivation of
Escherichia coli by sonication at discrete ultrasonic frequencies. Water
Research, Vol. 34, Issue 15, pp. 3888-3893. 81.
Hughes, D. E. (1961): J. Biochem. Microbiol. Technol.
Eng., 3. p. 405. 82.
Hughes, D. E. – Nyborg, W. L. (1962): Cell disruption
by ultrasound. Science. Vol. 138., pp. 108-144. 83.
Hurst, R. M. – Betts, G. D. – Earnshaw, R. G. (1995):
The antimicrobial effect of power ultrasound. R&D Report No.
4, Chipping Campden, Glos. 84.
Inoue, M. – Chrunch, C. C. – Brayman, A. – Miller, M.
W. Malcuit, M. S. (1989): Confirmation of the protective effect of cisteamine
in in vitro ultrasound exposures. Ultrasonics. Vol. 27., pp. 362-369. 85.
Johnson, D.A.a – Feke, D.L.a
(1995): Methodology for fractionating suspended particles using ultrasonic
standing wave and divided flow fields. Separations Technology, Vol. 5, Issue 4.
pp. 251-258. 86.
Kardos, E. –
Szenes E. (1972): Konzervipari zsebkönyv. Mezőgazdasági Kiadó, Budapest. pp.:
22-28. 87.
Kaufman, G. E. – Miller, M. W. – Grriffiths, T. D. –
Clalrvino, V. (1977): Ultrasound Med. Biol. 3, 21. 88.
Kaufman, G. E. (1985): Mutagenicity of ultrasound in cultured
mammalian cells. Ultrasound Med. Biol. Vol. 11., pp. 497-501. 89.
Kessler, L.W. – Dunn, F. (1969): Ultrasonic
Investigation of the Conformal Changes of Bovine Serum Albumin in Aqueous
Solutions. J. Phys. Chem. Vol. 73, p. 4256. 90.
Kim, A. – Pavlovic, S. – Schnitzler, R. M. – Woeber,
K. H. (1971): First Nat. Rumanian Conf. On Biophisics, Bucharest, p. 69. 91.
Kondo, T. – Gamson, J. – Mitchell, J. B. – Riesz, P.
(1988): Free radical formation and cell lysis induced by ultrasound in the
presence of different rare gases. Int. J. Radiat. Biol. Vol. 54., pp. 995-962. 92.
Kozuka, T.a – Tuziuti, T. - Mitome, H. -
Fukuda, T. (1998): Control of a standing wave field using a line-focused
transducer for two-dimensional manipulation of particles. Japanese Journal of
Applied Physics, Part 1. Volume 37, Issue 5B, pp. 2974-2978. 93.
Kuttruff, H. (1991): Ultrasonics Fundamentals and
Applications. Elsevier Applied Science, London and New York. 94.
Lakatos, E. – Lőrincz, A. – Neményi, M.
(2002): Az ultrahangos sejtroncsolás fizikai kritériumainak meghatározás a
folyékony élelmiszerek csíraszám csökkentésével kapcsolatban. Élelmezési Ipar. LVI. Évfolyam 2002. No.
7. pp. 203-206. 95.
Lang, J. – Cerf, R. (1969): Absorption Ultrasonore
dans des Solutions c/Acide Desoxyribonucleique: Etude de la Denaturation
Alcaline. J. Chim. Phys. Vol. 66. p. 81. 96.
Langenberg, K.J. (1985): Abbildung und Identifikation
von Materialfehlern mit Ultraschall. Fortschr. D. Akustik (I). S. 127. DAGA 85:
DPG-GmbH, Bad Honnef. 97.
Lauterborn, W. (1974): in Finite-Amplitude Wave
Effects in Fluids, Ed., Bjorno, L. IPC Science and Technology Press, Ltd.,
Guildford, Surrey, England, pp. 195-202. 98.
Lauterborn, W. - Bolle, H. (1975): Experimental investigations
of cavitation bubble collapse in the neighbourhood of a solid boundary. J.
Fluid Mech. 72, 391. 99.
Lee, B. H. – Kermasha, S. – Baker, B. E. (1989):
Thermal ultrasonic and ultraviolet inactivation of salmonella in thin
films of aqueous media and chocolate. Food Microbiol. Vol. 6., pp. 143-152. 100.
Li, G. C. – Hahn, G. M. – Tolmach, L. J. (1977a):
Cellular inactivation by ultrasound. Nature. Vol. 267. p. 163. 101.
Li, G. C. – Hahn, G.M. – Tolmach, L.J. – Shiv, E. –
Pounds, D. (1977b): Radiat. Res. Vol. 70, p- 691. In.: ter Haar,
G.R. (1988): Biological Effects of Ultrasound in Clinical Applications. In
Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and Biological
Effets. VCH Verlagsgesellschaft mbH, Weinheim, pp. 305-319. 102.
Liebeskind, D. – Bases, R. – Elequin, F. – Neubrot, S.
– Leifer, R. – Goldberg, R. – Koenigsberg, M. (1979): Diagnostic ultrasound:
effects on the DNA and growth patterns of animals cells. Radiology. Vol. 131,
pp. 177-184. 103.
Lillard, H. S. (1993): Bactericidal effect of chlorine
on attached Salmonellae with and without sonification. J. Food Protect. Vol.
56., No. 8., pp. 716-717. 104.
Limaye, M. S. – Coakley, W. T. (1998): Clarification
of small volume microbial suspensions in an ultrasonic standing wave. Journal
of Applied Microbiology. Vol. 84., Issue. 6., pp. 1035-1042. 105.
Loverock, P. – ter Haar, G. (1991): Synergism between
hyperthermia, ultrasound and gamma irradiation. Ultrasound Med. Biol. Vol. 17.,
pp. 607-612. 106.
Lőrincz A. – Neményi M. (2001a): Az
ultrahang hatása folyadékban szuszpendált pékélesztő csíraszámának változására.
MTA-AMB Kutatási-Fejlesztési
Tanácskozás, Gödöllő, 2001. január 23-24. No. 25. p. 14. 107.
Lőrincz, A.
- Neményi, M. (2001b): Cell decrease by ultrasonic effect on yeast (Saccharomyces
cerevisiae) suspension and the limit concentration of cavitation. 2001.
augusztus 28-30. Physical Methods In Agriculture, Prága 108.
Lőrincz, A. – Neményi, M. (2002a):
Akusztikai kavitáció kialakulásának koncentrációfüggése szuszpenziókban.
Élelmiszerfizikai közlemények. (in print) 109.
Lőrincz, A.
– Neményi, M. (2002b): Az in vitro sejtfeltárás hatékonyságát
befolyásoló fizikai tényezők (1. rész). Laboratóriumi
Információs Magazin, Biofizika rovat. XI.
évfolyam, No. 2. pp. 36-38. 110.
Lőrincz, A.
– Neményi, M. (2002c): Az in vitro sejtfeltárás hatékonyságát
befolyásoló fizikai tényezők (1. rész). Laboratóriumi
Információs Magazin, Biofizika rovat. XI.
évfolyam, No. 2. pp. 36-38. 111.
Lőrincz, A. –
Neményi, M. (2002d): Ultrahangtér fizikai minőségének befolyása a
besugárzás miatt kialakult mechanikai hullámjelenségekre folyadékokban,
valamint az ebből következő biológiai és fizikai hatások értékelése. MTA-AMB
Kutatási-Fejlesztési Tanácskozás, Gödöllő, 2002. január 20-21. Vol. 2. pp. 150-154. 112.
Lőrincz, A. –
Neményi, M. (2002e): A sejtkoncentráció-akusztikus jelenség -
sejtéletképesség változás kölcsönhatásának vizsgálata ultrahangtérben. V.
Nemzetközi Élelmiszertudományi Konferencia. A Szegedi Tudományegyetem Szegedi
Élelmiszeripari Főiskolai Kara és az MTA Szegedi Területi Bizottsága,
Agrárműszaki Szakbizottsága rendezésében. 2002. október 24–25. pp. 99-100.
Teljes anyag megjelent CD lemezen. 6 SZTE-SZÉF ISBN 963482577X. 113.
Lőrincz, A.
– Neményi, M. (2002f): Assesement of the effectiveness of ultrasonic
cell disruption by acoustic phenomena as a function of the suspension
concentration. 32’nd Annual Ultrasonic Industry Association Symposium. October
21 – 23. 2002, The Helmsley Hotel, 114.
Lőrincz, A. (2003a): Effectiveness of
ultrasonic cell disruption as a function of the suspension concentration. Acta
Alimentaria (megjelnik: 2004. június, 33. évfolyam. 2. szám) 115.
Lőrincz, A.
(2003b): Az aktív ultrahang alkalmazása napjainkban (2. rész). Laboratóriumi Információs Magazin, Biofizika rovat. XII. évfolyam., No. 6. pp. 28-33. 116.
Lőrincz, A. – Neményi, M. (2003a): Examination of the concentration
dependence of acoustical phenomenon in water based suspensions. Acta Agronomica
Ovariensis. Vol. 45. No. 1. pp. 85-96. 117.
Lőrincz, A.
– Neményi, M. (2003b): Appreciation of an complex ultrasound system
according to survival cell count. Hungarian Agricultural Engineering. Vol. 16.
pp. 32-34. 118.
Lőrincz, A.
– Neményi, M. – Lakatos, E. (2003a): A magas intenzitású ultrahang
sejtroncsoló hatásának alakulása a besugárzott anygtól függő akusztikai
jelenségek mellett. MTA-AMB Kutatási-Fejlesztési Tanácskozás, Gödöllő, 2003.
január 21-22. No. 27. p. 79. 119.
Lőrincz, A.– Neményi, M. – Lakatos, E. (2003b):
A szelektív sejtbiológiai kezelések ultrahangos megvalósítása (The selective
cellbiologycal treatments by ultrasound) Műszaki Kémiai Napok, Veszprém, 2003. április 16-18. pp. 260-261. 120.
Lőrincz, A. (2004a): Az aktív
ultrahang alkalmazása napjainkban (3. rész). Laboratóriumi Információs Magazin, Biofizika rovat. XIII. évfolyam., No. 1.
121.
Lőrincz, A. (2004b):
Mesterséges látás sejtanalitikai alkalmazása. MTA-AMB Kutatási-Fejlesztési
Tanácskozás, Gödöllő, 2004. január 20-21. No. 28. p. 14. ISBN 963 611 406 4 122.
Macintosh, I. J. C. – Davey, D. A. (1970): Chromosome
aberrations induced by an ultrasonic fetal pulse detector. Br. Med. J., Vol. 4,
pp. 92-93. 123.
Maeda, K. – Murao, F. (1977): in „Ultrasound in
Medicine”, White, D. N. – Brown, R. E., Eds., Plenum Press, New York, 1977,
Vol. 3B, p. 2045. 124.
Mandralis, Z. I. – Feke, D. L. (1993): Continuous
suspension fractionation using acoustic and divided-flow fields. Chemical
Engineering Science. Vol. 48., Issue. 23., pp. 3897-3905. 125.
Mason, T. – Newman, A. – Sukhvinder, P. – Charter, C.
(1994): Sound solution. World Water Environ. Eng. (April), p. 16. 126.
Mason, T. J. – Paniwnyk, L. - Lorimer, J. P. (1996):
The uses of ultrasound in food technology. Ultrasonics Sonochemistry. Vol. 3.,
Issue. 3., pp. S253-S260. 127.
McClements, D. J. (1995): Advances in the application
of ultrasound in food analysis and processing. Trends in Food Science&Technology.
Vol. 6., Issue 9., pp. 293-299. 128.
Mikio, S. – Dazhong, W. – Kyioshi, I. – Kimihiro, S.
(1994): Effects of ultrasonic irradiation on production of fermented milk with
Lactobacillus delbrueckii. Ultrasonics Sonochemistry, Vol. 1. Issue 2. pp.
S107-S110. 129.
Miles, C.A. – Morley, M.J. – Hudson, W.R. – Mackey,
B.M. (1995): Principles of separating micro-organisms from suspensions using
ultrasound. Journal of Applied Bacteriology, Vol. 78, Issue 1, pp. 47-54. 130.
Miller, D. L. (1987): A review of the ultrasonic
bioeffectiveness of microsonation, gas-body activation, and related
cavitation-like phenomena. Ultrasound Med Biol., Vol. 13, pp. 443-470. 131.
Miller, D. L. – Williams, A. R. (1989): Bubble cycling
as an explanation of the promotion of ultrasonic cavitation in a rotating tube
exposure system. Ultrasound Med Biol., Vol. 15, pp. 641-648. 132.
Miller, D. L. – Thomas, R. M. – Frazier, M. E. (1991):
Ultrasonic cavitation indirectly induces single strand breaks in DNA of viable
cells in vitro by the action of residual hydrogen peroxide. Ultrasound
Med. Biol. Vol. 17, pp. 729-735. 133.
Miller, D. L. – Thomas, R. M. (1993): Frequency
dependence of cavitation activity in a rotating tube exposure system compared
to the mechanical index. J. Acoust. Soc. Am. Vol. 93., pp. 3475-3480. 134.
Miller, D. L. – Thomas, R. M. (1994): Cavitation
dosimerty: estimates for single bubbles in rotating-tube exposure system.
Ultrasound in Med & Biol.,
Vol. 20, pp. 197-193. 135.
Miller, D. L. – Thomas, R. M. – Buschbom, R. L.
(1995): Comet Assay reveals DNA strand breaks induced by ultrasonic cavitation
in vitro. Ultrasound Med Biol., Vol. 21, pp. 841- 848. 136.
Miller, M. W. – Miller, D. L. – Brayman, A. A (1996):
A review of in vitro bioeffects of inertial ultrasonic cavitation from a
mechanistic perspective. Ultrasound in Medicine and Biology, Vol. 22, Issue 9,
pp. 1131-1154. 137.
Miller, D. L. – Bao, S. – Gies, R. A. – Thrall, B. D.
(1999): Ultrasonic enhancement of gene transfection in murine melanoma tumors.
Ultrasound in Medicine and Biology, Vol. 25, Issue 9, pp. 1425-1430. 138.
Mitome, H. (1998): The mechanism of generation of
acoustic streaming. Electronics and Communications in Japan, Part 3. Vol. 81,
Issue 10, pp.1-8. 139.
Morton, K. I. – ter Haar, G. R. – Stratford, I. J. –
Hill, C. R. (1982): Br. J. Cancer. 45, Suppl. V, 147. In.: ter Haar, G.R.
(1988): Biological Effects of Ultrasound in Clinical Applications. In Suslick,
S. K. (1988): Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim, pp. 305-319. 140.
Moser, M. – Pálmai, Gy. (1992): A környezetvédelem
alapjai. Nemzeti Tankönyvkiadó, Budapest. p. 382. 141.
Muir, T.G. – Carstensen, E.L. (1980): Ultrasound Med.
Biol. Vol. 6. p. 345. In.: Rooney, J.A. (1988): Other Nonlinear Acoustic
Phenomena. In.: Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and
Biological Effets. VCH Verlagsgesellschaft mbH, Weinheim, pp. 65-92. 142.
Neis U., Tiehm A. (1999) Ultrasound in waste water and
sludge treatment. In: Tiehm A. and Neis U. (eds.) Technical University of
Hamburg-Harburg Reports on Sanitary Engineering 25: Ultrasound in
Environmental Engineering. pp. 39-61. (ISSN 0724-0783; ISBN 3-930400-23-5) 143.
Neményi, M.
– Lőrincz, A. (2001a): Cell concentration decreasing with ultrasonic
effect of yeast (Saccharomyces cerevisiae) suspension. Műszaki Kémiai
Napok, Veszprém, 2001. április 24-26. p. 254. 144.
Neményi, M.
– Lőrincz, A. (2001b): Cell (Saccharomyces
cerevisiae) disruption with ultrasound treatment. In: Institute of
agricultural, food and environmental engineering. Conference für Leben und Überleben, Internationaler Kongress, Wien,
Universitat für Bodenkultur, 2001. november 18-21. p. 192. 145.
Neményi, M. – Lőrincz, A. (2002a):
Ultrahang akusztikai jelenségeinek koncentrációfüggése és ennek hatása a
sejtroncsolásra. Élelmiszerfizikai közlemények. (elfogadva, megjelenés alatt) 146.
Neményi, M. –
Lőrincz, A. (2002b): Komplex ultrahangrendszer értékelése a
besugárzás miatt kialakult mikroorganizmus-csíraszám csökkentő hatás alapján.
MTA-AMB Kutatási-Fejlesztési Tanácskozás, Gödöllő, 2002. január 20-21. Vol. 2.
pp. 145-149. 147.
Neményi, M. –
Lőrincz, A. (2002c): Különböző típusú szuszpendált szemcsék
tulajdonságainak hatása az ultrahangos kavitációra. Műszaki Kémiai Napok,
Veszprém, 2002. április 16-18. pp. 260-261. 148.
Neményi, M. –
Lőrincz, A. (2002d): Az ultrahang sejtbiológiai hatásinak elemzése a
hangtér fizikai paramétereinek függvényében. XXXII. Membrán-Transzport Konferencia.
A Romhányi György Alapítvány, A Magyar Élettani Társaság Membránbiológiai
Szakosztály és a Magyar Biofizikai Társaság közös rendezvénye. Sümeg, 2002.
május 21-24. p. 33. 149.
Neményi, M. –
Lőrincz, A. (2002e): Ultrahangtérben kialakuló sejtroncsoló hatás
értékelése a szelektív biológiai hatások tükrében. XXIX. Óvári Tudományos
Napok, Mosonmagyaróvár, 2002. október 3-4. p. 111. 150.
Neményi, M. –
Kacz, K. – Kovács, A. J. – Stépán, Zs. – Lőrincz, A. (2002): Agro- és
élelmiszerfizikai kutatások a Nyugat-Magyarországi Egyetem Agrárműszaki,
Élelmiszeripari és Környezettechnikai Intézetében. EU Konform mezőgazdaság és
élelmiszerbiztonság. Tudományos Tanácskozás, Debrecen, 2002. szeptember 23. pp.
307-320. 151.
Neményi,
M. – Lőrincz, A. – Lakatos, E. (2003): Az ultrahangsugár fizikai paramétereinek
változása a besugárzott anyagban. MTA-AMB Kutatási - Fejlesztési Tanácskozás, Gödöllő, 2003. január 21-22.
No. 27. p. 55. 152.
Neppiras, E. A. - Parrot, J. (1965): Fifth
International Congress on Acoustics, Liege, Paper D51. 153.
Neppiras, E. A. (1969): J. Acoust. Soc. Amer. Vol. 46,
p. 587. In.: Fry, F. J. (1978): Ultrasound: Its Applications in Medicine and
Biology. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York. 154.
Neppiras, E. A. (1980): Ultrasonics, Vol. 18. p. 201.
In.: Frizzel, L.A. (1988): Biological Effects of Acoustical Cavitation. In.:
Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and Biological
Effets. VCH Verlagsgesellschaft mbH, Weinheim. 155.
Nyborg W. L. –Miller D. L. - Gershoy, A. (1974):
Proceedings of Seventh Rochester International Conference on Environmental
Toxicity, Plenum Publishing Co, New York. 156.
Ordonez, J. A. – Sanz, B. – Hernandez, P. E. –
Lopez-Lorenzo, P. (1984): A note on the effect of combined ultrasonic and heat
treatments on the survival of thermoduric Streptococci. J. Appl.
Bacteriol. Vol. 56., pp. 175-177. 157.
Petin, V. G. – Komarov, V. P. – Skvortzov, V. G.
(1980): Combined action of ultrasound and ionizing radiation on yeast cells.
Radiation and Environmental Biophysics. Vol. 18., Issue. 1., pp. 45-55. 158.
Petin, V. G. – Zhurakovskaya, G. P. – Komarova, L. N.
(1999): Mathematical description of combined action of ultrasound and
hyperthermia on yeast cells. Ultrasonics. Vol. 37., Issue. 1., pp. 79-83. 159.
Post, E. J. (1953): J. Acoust. Soc. Am. 25, 55. 160.
Povey, M. J. W. – McClements, D. J. (1988):
Ultrasonics in food engineering. Part I: Introduction and experimental methods.
Journal of Food Engineering. Vol. 8., Issue 4., pp. 217-245. 161.
Prise, K. M. – Davies, S. - Michael, B. D. (1989):
Cell killing and DNA damage in Chinese hamster V79 cells treated with hydrogen
peroxide. Int. J. Radiat. Biol. Vol. 55., pp. 583-592. 162.
Radel, S. -
McLoughlin, A. J. – Walsh, P. – Gherardini, L. – Doblhoff-Dier, O. –
Benes, E. (1999a): Application of low intensity ultrasonic wave fields to
manipulate and direct the immobilisation/bio-encapsulation of yeast cells. Oral
presentation, to be published in Proc. Of the Eight International Workshop on
Bioencapsulation, Trondheim, Norway, September 13th – 15th, 1999. 163.
Radel, S. -
McLoughlin, A. J. – Gherardini, L. – Doblhoff-Dier, O. – Benes, E.
–Connel, C. O. – Cregg, B. – Cottel, D. C. – Benes, E. (1999b): Morphology and
viability of Saccharomyces cerevisiae in suspension stressed with ultrasonyc
plane waves. Oral presentation, to be published in Proc. of the 23rd Annual
Symposium of the Microscopy Society of Ireland, Belfast, August 3st – September
2nd, 1999. 164.
Raso, J. – Condon, S. – Sala Trepat, F. J. (1994):
Mano-thermosonication: a new method of food preservation? In: Food Preservation
by Combined Processes. Final report for FLAIR Concerted Action No. 7 Subgroup
B. 165.
Raso, J. – Pagan, R. – Condon, S. – Sala, F.J. (1998):
Influence of temperature and pressure on the lethality of ultrasound. Applied
and Environmental Microbiology, Vol. 64, Issue2, pp. 465-471. 166.
Rayleigh (1892): On the Influence of Obstacles
Arranged in Rectangular Order on the Properties on the Medium. Phil. Mag. Vol.
34, p. 481. 167.
Rayleigh, (1902): Phil. Mag. 3, 338. 168.
Riesz, P. – Kondo, T. (1992): Free radical formation
induced by ultrasound and its biological implications. Free Rad. Biol. Med.
Vol. 13, pp. 247-270. 169.
Rooney, A. J. (1970): Science. 169. p. 869. 170.
Rooney, J.A. (1988): Other Nonlinear Acoustic
Phenomena. In.: Suslick, S. K. (1988): Ultrasound, Its Chemical, Phisical, and
Biological Effets. VCH Verlagsgesellschaft mbH, Weinheim, pp. 65-92. 171.
Rubleson, G. R. – Murray, T. M. – Pollard, M. (1975):
Appl. Microbiol. P. 340. 172.
Rudenko, O.V. – Soluyan, S.I. (1977): Theoretical
Foundations of Nonlinear Acoustics. Plenum Press, New York. In.: Rooney, J.A.
(1988): Other Nonlinear Acoustic Phenomena. In.: Suslick, S. K. (1988):
Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim, pp. 65-92. 173.
Saad, A. H. – Williams, A. R. (1985): Possible
mechanisms for the agitationinduced enhancement of acoustic cavitation in
vitro. J. Acoust. Soc. Am. Vol. 78., pp. 429-434. 174.
Sanz, P. – Palacios, P. – Lopez, P. – Ordonez, J. A.
(1985): Effect of ultrasonic waves on the heat resistance of Bacillus
stearothermophilus spores. In: Dring, G. J. – Ellars, D. J. – Gould, G. W.
(editors) Fundamental and Applied Aspects of Bacterial Spores, Academic Press,
New York, pp. 251-259. 175.
Riera-Franco de Sarabia, E. – Gallego-Gonzalez, J.A. –
Rodríguez-Corral, G. – Elvira-Segura, L. González-Gómez, I. (2000): Application
of high-power ultrasound to enhance fluid/solid particle separation processes.
Ultrasonics, Vol. 38, Issues 1-8, pp. 642-646. 176.
Sayan, P.a – Ulrich, J.b (2002): The effect of
particle size and suspension density on the measurement of ultrasonyc velocity
in aqueous solutions. Chemical Engineering and Processing, Vol. 41, Issue 3,
pp. 281-287. 177.
Schmitt, O. – Hall, S. E. – Uhlmayer,
B. (1930): The mechanism of the
letal effect of ultrasonic radiation. Proc. Soc. Exp. Biol. Med. 27., pp.:
626-628. 178.
Schnett-Abraham, I, - Trommer, E. – Levetzow, R.
(1992): Ultrasonics in sterilisation sinks. Applications of ultrasonics on
equipment for cleaning and disinfection of knives at the workplace in slaughter
and meat cutting plants. Fleiswirtschaft. Vol. 72., No. 6., pp. 864-867. 179.
Schnitzler, R. M. (1973): Interactions of Ultrasound
and Biological Tissues. DHEW Publication (FDA) 73-8008, BRH/DBE 73-1 p. 69. 180.
Sirotyuk, M. (1970): Sov. Phys. Acoust. Vol. 16. p.
237. In.: Atchley, A.A. – Crum, L.A. (1988): Acoustic Cavitation and Bubble
Dynamics. In.: Suslick, S. K. (1988):
Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim. 181.
Smedsgaard, J. (1997): Micro-scale extraction procedure
for standardized screening of fungal metabolite production in cultures. Journal
of Chromatography A. Vol. 760. Issue. 2. pp. 264-270. 182.
Strasberg, M. (1959): J. Acoust. Soc. Am. Vol 31. p.
163. In.: Atchley, A.A. – Crum, L.A. (1988): Acoustic Cavitation and Bubble
Dynamics. In.: Suslick, S. K. (1988):
Ultrasound, Its Chemical, Phisical, and Biological Effets. VCH
Verlagsgesellschaft mbH, Weinheim. 183.
Suslick, S. K. (1988): Ultrasound, Its Chemical,
Phisical, and Biological Effets. VCH Verlagsgesellschaft mbH, Weinheim. 184.
Szakály, S. (2001): Tejgazdaságtan. Dinasztia Kiadó,
Budapest. 185.
Tar, F. (1982): Ultrahangfizika. Kohó- és Gépipari
Továbbképző és Módszertani Intézet, Budapest. 186.
Tarleton, E.S. (1992): The role of Field-assisted
techniques in solid/liquid separation. Filtration and Separation, Vol. 29,
Issue 3, pp. 246-252. 187.
Tarnóczy, T. (1962): Akusztika. Akadémiai Kiadó,
Budapest. p.13. 188.
Tarnóczy, T. (1963): Ultrahangok. Műszaki Könyvkiadó,
Budapest. p.271. 189.
ter Haar, G. R. – Dyson, M. – Smith, S. P. (1979): Ultrasound
Med. Biol. 5, 167. 190.
ter Haar, G. R. – Straford, I. J. – Hill, C. R.
(1980): Br. J. Radiol. 53, 784. 191.
ter Haar, G.R. (1988): Biological Effects of
Ultrasound in Clinical Applications. In Suslick, S. K. (1988): Ultrasound, Its
Chemical, Phisical, and Biological Effets. VCH Verlagsgesellschaft mbH,
Weinheim, pp. 305-319. 192.
Thacker, J. (1973): An approach the mechanism of
killing cells in suspension by ultrasound. Biochem. Biophis. Acta. 304, p. 240.
193.
Thacker, J. (1974): Brit. J. Radiol. 47, p.130. 194.
Tiehm, A. (1999): Combination
of ultrasound and biodegradation: enhanced bioavailability of polycyclic
aromatic hydrocarbons. in: Tiehm A., and Neis U. (eds.): Technical
University of Hamburg-Harburg Reports on Sanitary Engineering 25:
Ultrasound in Environmental Engineering. pp. 167-180. (ISSN
0724-0783; ISBN 3-930400-23-5) 195.
Tiehm, A.a – Nickel, K. – Zellhorn, M. –
Neis, U. (2001): Ultrasonic waste activated sludge disintegration for improving
anaerobic stabilization. Water Research, Vol 35, Issue 8, pp. 2003-2009. 196.
Tolt, T.L.a – Feke, D.b (1993):
Separation of dispersed phases from liquids in acoustically driven chambers.
Chemical Enginnering Science, Vol. 48, Issue 3. pp. 527-540. 197.
Veit, I. (1977): Műszaki Akusztika. Műszaki
Könyvkiadó, Budapest. p.: 169. 198.
Verall, R. E. – Sehgal, C. M. (1988):
Sonoluminescence. In: Suslick,, K. S. ed. (1988): Ultrasound. Its chemical,
physical and biological effects. New York: VCH, pp. 227-286. 199.
Veress, E. – Vincze, J. (1977): The haemolysing action
of ultrasound on erithrocytes. Acustica. Vol. 36., pp. 100-103. 200.
Villamiel, M, - Jong, P. (2000): Inactivation
Pseudomonas fluorescens and Streptococcus thermophilus in Tripticase® Soy Broth
and the total bacteria in milk by continuous-flow ultrasonic treatment and
conventional heating. Journal of Food Engineering. Vol. 45., Issue. 3., pp.
171-179. 201.
Walsh, P. – Radel, S. - McLoughlin, A. J. –Gherardini, L. – Benes, E.
(1999): Evaluation of the effect of immobilisation techniques and low intensity
ultrasonic waves on brewer’s yeast cells. Poster presentation, to be published
in Proc. of the Ninth European Congress on Biotechnology, Brussels, July 11th –
15th, 1999. 202.
Watmough, D. J. – Dendy, P. P. – Eastwood, L. M. –
Gregory, D. W. – Gordon, F. C. A. (1977): Ultrasound Med. Biol. 3, 2205. 203.
Watmough, D. J. – Quan, K. M. – Shiran, M. B. (1990):
Possible explanation for the unexpected absence of gross biological damage to
membranes of cells insonated in susupension and in surface culture in chambers
exposed to standing and progressive wave fields. Ultrasonics. Vol. 28., pp.
142-148. 204.
Westervelt, P. J. (1951): J. Acoust. Soc. Am. 23, 312.
205.
Wedlock, D.J. – McConaghy, C.J. – Hawksworth, S.
(1993): Automation of ultrasound velocity scanning for concentrated
dispersions. Colloisd and Surfaces A: Physiochemical and Engineering Aspects,
Vol 77, Issue 1, pp. 49-54. 206.
Whithworth, G. – Coakley, W. T. (1992): Particle
column formation in a stationary ultrasonic field. Journal of the Acoustical
Society of America. Vol. 91., Issue. 1., pp. 79-85. 207.
Williams, A. R. – O’Brian, W. D. – Coller, J. R. –
Coller, B. S. (1976): Ultrasound in Medicine and Biology. 2. pp.:113. 208.
L 03.00-1 szabvány a peptonvíz elkészítéséhez 209.
ÉTI-ML-SOP-VU-FM-01-A/2 ref.: L06.00-18 szabvány az élősejtszám
meghatározásra 210.
SOP-03-1/3 és ÉTI-ML-SOP-03 szabvány a Plate-Count
Agar elkészítéséhez |